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ABSTRACT

The main idea of the thesis is to design an efficient tracking algorithm that is able to track

moving objects in presence of spatial illumination variation. The state vectors constitute of

the motion parameters and the illumination vectors. The illumination vector is designed as a

sparse vector using the fact that the scene parameters (e.g. illumination) at any given instant,

can have a sparse representation with respect to the basis i.e. only a few basis elements will

contribute to the scene dynamics at each instant. The observation is the entire image frame.

The non-linearity and the multimodality of the state-space necessitates the use of Particle

Filter. The illumination vector along with motion makes the state-space large dimensional

thus making the implementation of regular particle filter expensive. PF-MT has been designed

to tackle this problem but it does not utilize the sparsity constraint and hence fails to detect

the sparse illumination vector. So we design an algorithm that would use particle filter and

importance sample on the motion or the ’effective space’ and the mode tracking step of PF-MT

is replaced by the Modified Compressed Sensing for estimating the ’residual space’. Simulation

and also experiments with real video demonstrate the advantage of the proposed algorithm

over other existing PF based algorithms.
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CHAPTER 1. INTRODUCTION

Tracking is a useful statistical signal processing technique used to estimate a hidden state

sequence from a sequence of noisy observation that satisfy the Hidden Markov Model assump-

tion. A tracking algorithm recursively computes the posterior distribution at time t using the

posterior at time t − 1. In case of visual tracking it involves determining the position of a

known object from a sequence of image frames using the information of the object position in

the previous frame. Here, we study the problem of recursive, and causal, estimation of a time

sequence of sparse spatial signals, with slowly changing sparsity patterns, as well as other un-

known states, from a sequence of nonlinear and noise corrupted observations. In many practical

applications, particularly those in video processing and computer vision, the unknown state can

be split into a small dimensional part and a spatial signal (large dimensional part). The spatial

signal is often well modeled as a sparse signal. For a long sequence, its sparsity pattern (the

support set of the sparsity basis coefficients’ vector) can change over time, although the changes

are slow. Moreover, due to temporal dependencies, the nonzero signal values also change slowly

over time. For tracking problems that require causally estimating a time sequence of hidden

states, Xt, from nonlinear and non-Gaussian measurements, Yt that satisfy the hidden Markov

model assumption, the most common and efficient solution is to use a particle filter (PF). The

PF provides a sequential Monte Carlo approximation to the posterior. It uses sequential im-

portance sampling [10] along with a resampling step [12] to empirically estimate the posterior

distribution, πt|t(Xt) := fXt|Y1:t(xt|y1:t), of the state Xt conditioned on all observations up to

the current time, Y1:t. Here fXt|Yt refers to the PDF of X given Y .
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1.1 Motivation for new algorithm

In this work we introduce a solution called Particle filtered Modified-CS (PaFiMoCS) that

is inspired by PF-MT (Particle Filter with Mode Tracker). The key idea of PaFiMoCS is to

importance sample on the small dimensional state vector, while replacing importance sampling

by slow sparsity change constrained posterior mode tracking for recovering the sparse spa-

tial signal. For every importance sampled particle of the small dimensional state vector, one

solves the regularized Modified-CS problem to recover the spatial signal and its support. The

weighting step is designed appropriately according to the importance sampling principle [10].

We show how to design PaFiMoCS for tracking moving objects across spatially varying

illumination changes. Extensive experiments on both simulated data as well as on real videos

involving significant illumination changes demonstrate the superiority of the proposed algorithm

as compared with existing PF based tracking algorithms.

1.1.1 Need for new algorithm

Since the state space dimension in our problems is usually very large, the original PF [12]

will require too many particles for accurate tracking and hence becomes impractical to use.

As explained in [6], the same is essentially true for most existing PF algorithms. Some of the

efficient PFs such as PF-Doucet[10], Gaussian PF [15], Gaussian sum filters or Gaussian sum

PF [16] also cannot be used for the following reason. The first two implicitly assume that the

posterior conditioned on the previous state, is unimodal or is at least unimodal most of the

time. The second two assume a linear, or at least, a unimodal, observation model. In our

problem, the observation model is nonlinear and is such that it often results in a multimodal

observation likelihood, e.g., as explained in [6], this happens due to background clutter for

the illumination tracking problem. If, in addition, the state transition prior of the small di-

mensional state, e.g., the motion states, is broad, which is often the case, it will result in the

posterior being multimodal. Moreover, if the nonlinearity is such that the state to observation

mapping is not differentiable, then one cannot even find the mode of fXt|Y1:t,Xt−1
(xt|y1:t, xt−1)

and hence cannot even implement PF-Doucet. This is again true for the illumination problem.
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Frequently multimodal observation likelihoods and the above non-differentiability also mean

that the extended Kalman filter [29], the unscented Kalman filter [29], the interacting multiple

mode filter or Gaussian mixture filters cannot be used [11]. Rao-Blackwellized PF (RB-PF)

[22, 4] and PF with posterior mode tracking (PF-MT) algorithm [25] are two possible solutions

for large dimensional tracking problems, however, neither can exploit the sparsity or slow spar-

sity pattern change of the spatial signal. In addition, RB-PF also requires that conditioned on

the small dimensional state vector, the state space model be linear and Gaussian.

1.1.2 Application of PaFiMoCS

Here, we use a template-based tracking framework with a simple three-dimensional motion

model, that only models x-y translation and scale, because it is simple to use and to explain

our key ideas. This necessitates illumination tracking along with object motion.When the

illumination is constant, the motion of a rigid object moving in front of a camera can be

tracked using a three dimensional vector consisting of x-y translation and uniform scale or

more generally using a six dimensional affine model as in Condensation [13]. In Condensation

the use of a particle filter (PF) for tracking through multimodal observation likelihoods resulting

from background clutter or occlusions has been demonstated. Now if illumination also changes

over time and if different parts of the object experience different lighting conditions, then more

dimensions get added to the state space. Even a simple model of illumination such as that used

in [14, 6], which parameterizes illumination using a Legendre basis, requires a 3-7 dimensional

basis to represent illumination accurately. But even a 7-dimensional basis will increase the

total state space dimension to between 10 and 13. A key example of the above problem occurs

in tracking moving objects across spatially varying illumination changes, e.g. persons walking

under a tree (different lighting falling on different parts of the face at different times due to

the leaves blocking or not blocking the sunlight); or indoor sequences with variable lighting

in various parts of the room, either due to the placement of light sources, or due to sunlight

coming in through the windows that illuminates certain parts of the room better than others.

In all of these cases, one needs to explicitly track the motion (small dimensional part) as well

as the illumination. The illumination model is often represented using the top few coefficients



www.manaraa.com

4

of the Legendre basis (basis of Legendre polynomials) [14, 28, 6]. For videos with significant

spatiotemporal illumination variations, the projection of the illumination into the Legendre

basis is modeled as being a sparse vector [21], with slow sparsity pattern change.

1.2 Thesis outline

In the thesis we first discuss the basics of Particle Filter and Compressed Sensing. In 3rd

chapter we design the dynamical state-space models which can be divided into a smaller dimen-

sional vector and a large-dimensional sparse vector and discuss the development of two efficient

algorithms for recursively recostructing a sparse signal using regularized modified sensing fa-

cilitated by particle filter to predict the support and the smaller dimensional state space by

importance sampling. In 4th chapter we show an application of the algorithm for tracking a

joint motion-illumination model, where we desing the illumination as a sparse vector. Lastly

we show show our experimenation results in simulation as well as in real video, which includes

tracking of a person under changing illumination conditions. In the last chapter discuss the

concllusions and other future directions
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CHAPTER 2. Background

2.1 Particle Filtering

In this chapter we go through the basics of Particle filter and sequential Monte Carlo

techniques for Bayesian filtering [10],[1]. In the later half we discuss the basics of Compressed

Sensing and Modfiied Sensing [18], [27]. Then we briefly discuss about the Particle filter with

Mode tracker [6], [7] and the drawbacks that necessitated the design of Particle Filtering with

Modified Compressed Sensing algorithm. As a general definition of Particle filter, we can say,

it is an estimation technique for detection of states which are latent or hidden, from a given

noisy observation data.

2.1.1 Introduction to Bayesian Filtering

Consider the following state space model [10],

Xt = h(Xt−1) + wt

Yt = g(Xt) + vt (2.1)

Here Xt denotes the states and Yt denotes the observation of the current state with discrete

time t = 0,1.......,n. In real-life applications, for example, the state can be the position of a

target while the observation is the noisy sensor data about the current position and our goal

could be to extract the true state information using the observations and the state dynamical

model. The function h(.) and g(.) can be either linear or non-linear. The state sequences Xt ;

t = 1,2....,n are assumed to be hidden Markov process and Yt ; t = 1,2....,n are conditionally

independent observations. The following are assumed to be known:

i. p(X0); the initial state distribution
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ii. p(Xt | Xt−1); the state transition density

iii. p(Yt | Xt); the observation likelihood.

Here p(.) denotes the probability density function. (i) and (ii) can be obtained from the

distribution of the noise wt and vt. We consider wt and vt as idndependent and identically

distributed (iid) which can either be Gaussian or non-Gaussian. For simplicity we consider

these to be Gaussian. We denote X1:t ≡ (X1, ...., Xt) and Y1:t ≡ (Y1, ...., Yt) as the state

sequence and the observations upto time T respectively.

Our aim is to estimate:

(a) The joint posterior state distribution at time t i.e, p(X1:t | Y1:t) or its marginal p(Xt | Y1:t)

(b) Expectation of the form: It = Ep(Xt|Y1:t)(fX(Xt)) =
∫

fX(Xt)p(Xt | Y1:t)d(Xt)

Here X is a random variable distributed over the interval [a, b] where fX(X) is a continuous

PDF. The state space are assumed to have Hidden markov Model (HMM) i.e, Xt is a Markov

process and Yt for t = 1......n, are conditionally independent of the previous states and previous

observations. i.e., p(Yt|Xt−1, Y1:t−1) = p(Yt|Xt) and under HMM assumptions p(Xt|X1:t−1) =

p(Xt|Xt−1). When the posterior can be assumed to be Gaussian and h(.), g(.) to be linear

the same problem can be solved using Kalman filter [29]. Extended Kalman filter [29] can be

used, if g(.) is non-linear, but it still assumes the gaussianity of the posterior distribution. But

in many practical problems the posterior can be non-Gaussian with non-linear h(.) and g(.).

Under such circumstances, sequential Monte Carlo technique based particle filtering algorithm

gives us a way to solve this posterior estimation problem.

2.1.2 Derivation of Particle Filter

In order to compute the expectation w.r.t the joint posterior distribution it is required

to know, if it is possible to sample from p(X1:t | Y1:t). and if we have a closed form of the

expression. In most real life situations it is not possible to sample from the posterior i.e,

p(X1:t | Y1:t) nor does it have a closed form of expression. Bayesian importance sampling is

a proceedure to tackle this problem. The key idea is to represent the required posterior pdf
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by a set of random samples with associated weights and to compute estimates based on these

samples and the weights. The derivation is based on [10].

2.1.2.1 Bayesian Importance Sampling

Since it is impossible to sample from p(X1:t | Y1:t), we adopt an importance sampling

approach. Since we do not have a closed form of the expression p(X1:t | Y1:t), it can be

expressed in the following manner,

p(X1:t | Y1:t) =
p(X1:t, Y1:t)

p(Y1:t)

∝ p(X1:t, Y1:t) (2.2)

A recursion can be obtained as p(X1:t | Y1:t) = p(X1:t−1 | Y1:t−1)p(Yt | Xt)p(Xt | Xt−1)

with p(Yt | Xt) and p(Xt | Xt−1) known. Let us consider the importance density function to

be π(X1:t | Y1:t) from which we are going to draw samples. We choose π(.) in such a way that

we can recursively compute its expression and it has a convenient closed form expression from

which we can easily draw samples. Now we write the posterior expectation as:

It =

∫
fX(X1:t)p(X1:t | Y1:t)d(X1:t)

=

∫
fX(X1:t)p(X1:t, Y1:t)d(X1:t)

p(Y1:t)

=

∫
fX(X1:t)p(X1:t, Y1:t)d(X1:t)∫
X1:t

p(X1:t, Y1:t)d(X1:t)

=

∫
fX(X1:t)

p(X1:t,Y1:t)
π(X1:t|Y1:t)π(X1:t | Y1:t)d(X1:t)∫

X1:t

p(X1:t,Y1:t)
π(X1:t|y1:t)π(X1:t | Y1:t)d(X1:t)

=
Eπ(.)[f (X1:t)

p(X1:t,Y1:t)
π(X1:t|Y1:t) ]

Eπ(.)[ p(X1:t,Y1:t)
π(X1:t|Y1:t) ]

(2.3)

We can now draw sample from π(.) as Xi
1:t ∼ π(X1:t | Y1:t), where i = 1,....,Npf , the discretized

version of π(.), given as π̂(.) can be obtained and It can be determined as:

It =
1
NΣN

i=1fX(Xi
1:t)w̃

i
t

1
NΣN

i=1w̃
i
t

= ΣN
i=1fX(Xi

1:t)w
i
t (2.4)

where w̃it =
p(Xi

1:t,Y1:t)

π(Xi
1:t|Y1:t)

and wit =
w̃i

t

ΣN
j=1w̃

j
t
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The corresponding approximation to the joint posterior distribution is given as,

p̂(X1:t, Y1:t) ≈ ΣN
i=1w

i
tδ(X1:t −Xi

1:t) (2.5)

Here the wit is defined as the normalised weight such that Σiw
i
t = 1.

We choose an importance function of the form:

π(X1:t | Y1:t) = π(X1:t−1 | Y1:t−1)π(X1:t | X1:t−1, Y1:t) (2.6)

Since p(X1:t, Y1:t) = p(X1:t−1, Y1:t−1)p(Yt | Xt)p(Xt | Xt−1), we can develop a recursive way of

computing the importance weight as,

w̃it =
p(Xi

1:t, Y1:t)

π(Xi
1:t | Y1:t)

= w̃it−1

p(Yt | Xi
t)p(X

i
t | Xi

t−1)

π(Xi
t | Xi

1:t−1, Y1:t)
(2.7)

where Xi
t ∼ π(Xi

t | Xi
1:t−1, Y1:t) and Xi

1:t = [Xi
1:t−1,Xi

t ] Thus the estimates of the posterior

distribution can be computed recursively starting with the initial distribution.

2.1.2.2 Choice of Importance Function

The choice of the importance function is very crucial as it minimises the variance of the

importance weight conditional upon the selected trajectory and observations. The following

methods described are based on [10].

1. Optimal Importance Function: The importance function can be chosen in various ways,

the simplest form is to use the state transtion density as the importance function,i.e,

π(Xi
t | Xi

1:t−1, Y1:t) = p(Xt | Xt−1)

This gives w̃it = w̃it−1p(yt | Xi
t) (2.8)

It can be shown that the optimal importance density is one which minimizes the variance

of the importance weight conditioned upon the observations and previous state samples

(under HMM conditions) and πopt(.) = p(Xt | Xt−1, Yt).
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2. Importance Distribution Obtained by Local Linearizarion: Here a scheme is presented by

which a Gaussian importance function is derived whose parameters are evaluated using

local linearisation i.e, which are dependent on the simulated trajectory. Let us consider

the following model:

Xt = h(Xt−1) + wt, wt ∼ N (0,Σw)

Yt = g(Xt) + vt, vt ∼ N (0,Σv)

where h(.) and g(.) are differentiable. Performing an approximation up to first order of

the observation equation, we get:

Yt ' g(h(Xt−1)) +
δg(Xt)

δXt
|Xt=h(Xt−1)[(Xt − h(Xt−1)) + wt] (2.9)

Though this equation is not markovian as 2.9 is dependent on Xt−1, the Gaussian im-

portance function can be obtained as: π(Xt | Xt−1, Yt) ∼ N (mt,Σt); with mean (mt and

covariance Σt.evaluated for each trajectory i = 1,....,npf using the following formula:

Σ−1
t = Σ−1

w + [
δg(Xt)

δXt
|Xt=f(Xt−1)]

′
Σ−1
v

δg(Xt)

δXt
|Xt=f(Xt−1) (2.10)

mt = Σt(Σ
−1
w h(Xt−1) + [[

δg(xt)

δXt
|Xt=h(Xt−1)]

′
Σ−1
v ]

×(Yt − g(h(Xt−1)) +
δg(Xt)

δXt
|Xt=h(Xt−1)f(Xt−1))) (2.11)

The associated importance weight is calculated using the following equation:

w̃it = w̃it−1

p(Yt | Xi
t)p(X

i
t | Xi

t−1)

π(Xi
t | Xi

1:t−1, Y1:t)
(2.12)

3. Importance Distribution by Local Linearizarion of the optimal importance function: Here

we assume a function l(Xt)=log p(Xt | Xt−1, Yt) such that l(xt) is twice diffrenciable.

We define:

l ′(Xt) =
δl(Xt)

δXt
|Xt=X (2.13)

l′′(Xt) =
δ2l(Xt)

δXtδX ′t
|Xt =X (2.14)

(2.15)
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The point x is so chosen that,

x = arg max
Xt

l(Xt)

= arg max
Xt

log [p(Xt | Xt−1, Yt)]

= arg max
Xt

log [p(Xt | Xt−1)] + log[p(Yt | Xt)]

= arg min
Xt

−log [p(Xt | Xt−1)]− log [p(Yt | Xt)] (2.16)

Also we assume that l′′(Xt) is negative definite, then l(Xt) is concave. We set:

Σ(x) = −l′′(x)−1 (2.17)

and m(x) = Σ(x)l′(x)

Then the importance function can be calculated as:

π(Xt | Xt−1, Yt) = N (Xt;m(x) + x,Σx)

Assuming the function p(Xt | Xt−1, Yt) is unimodal, x can be adopted as the mode of

that function for which l ′(Xt) = 0 . Hence m(x) = 0 and the importance function is:

π(Xt | Xt−1, Yt) = N (Xt; x,Σx) (2.18)

The associated importance weight is calculated using equation .

2.1.3 Resampling

To prevent the degenerency of weights in SIS (sequential importance sampling) algorithm

[10], the next step of the particle filter involves resampling. The particles are resampled w.r.t

their normalised importance weights i.e, {wit}
Npf

i=1 is used as the probability mass function to

sample the existing particles again. The basic idea of resampling is to discard the particles that

have small weights and concentrate on the particles that have larger weights. The resampling

involves generating a new set {xi∗t }
Npf

i=1 such that Pr{xi∗t = xjt} = wjt . The weights are then

reset to 1
N .
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2.1.4 The Basic Particle Filter

The algorithm for the Particle Filter is given as [10]:

1. Initate: At time t = 0, sample Xi
0 ∼ N (0,Σ0) for i = 1.....npf

2. For t ≥ 0,

a. Sample Xi
t ∼ π(Xt | Xi

t−1, Yt) for i = 1.....Npf

b. Assign the particle a weight, w̃it, according to (2.7)

c. Calculate the normalised weight wi
t =

w̃i
t

ΣN
j=1w̃

j
t

d. Resample particles as Xi
t ∼ PMF[{wt}] and Reassign wi

t = 1
N

e. Set the resampled particles Xi
1:t = [Xi

1:t−1, Xi
t]

f. Compute the posterior PDF as per (2.5) and the posterior expectation as per (2.4)

3. Set t+1 ← t and go to step (2)

2.1.5 A Review of Particle Filter with Mode Tracker and its limitations

When the dimensionality of the state increases the two issues that are faced are that the

observation likelihood becomes multimodal and the application of PF requires a large num-

ber of particles. Particle filter with efficient importance sampling (PF-EIS) was proposed in

[25] to handle multimodal observation likelihoods with more details in [[26], [24], [23]]. Now,

if the state-space dimensionality is large (10 or more), it makes particle filtering even more

challenging because the number of particles required for reasonable accuracy in estimating the

state becomes very large. Rao Blackwellization (RB-PF) [[22], [4]] can be used to handle this

problem provided the state space model is conditionally linear-Gaussian. For many practical

problem, this assumption does not hold. But in most large dimensional problems, the state

change variance is large in only a few dimensions i.e. the LDSS property [8] holds i.e, at a

given time the state change is large for only a few states and for the other states the change

is small. Hence the design of PF-MT. The key idea of PF-MT is as follows [25]. It splits the

state vector Xt into Xt = [Xt,s, Xt,r] where Xt,s denotes the coefficients of a small dimensional
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“effective basis” (in which most of the state change is assumed to occur) while Xt,r belongs to

the “residual space” in which the state change is assumed “small”. It importance samples only

on the effective basis dimensions, but replace importance sampling by deterministic posterior

Mode Tracking (MT) in the residual space. Thus the importance sampling dimension is only

dim(Xt,s) (much smaller than dim(Xt)) and this is what decides the effective particle size. PF-

MT implicitly assumes (i) that the posterior of the residual space conditioned on the previous

state and the effective basis (“conditional posterior”) is unimodal most of the time; and that

(ii) it is also narrow enough. Under these two assumptions, it can be argued that any sample

from the conditional posterior is close to the conditional posterior mode with high probability

[25, Theorem 2].

PF-MT can be directly applied to our problem if we do not use the sparsity of Λt. Then,

with Xt,s = Ut and Xt,r = Λt we get the PF-MT algorithm given in Algorithm 1.

Algorithm 1 PF-MT: Particle Filter with posterior Mode Tracker

For all t ≥ 0 do

1. For each particle i: Importance sample Ut from its prior: U it ∼ N (0,Σu)

2. For each particle i: Mode track Λt: compute the mode of the posterior of Λt conditioned

on Xi
t−1 and U it , i.e. compute Λit as the solution of

min
Λ
C(Λ) := − log fZ(Yt − h([U it ,ΦΛ])) +

‖Λ− Λit−1‖22
2σ2

l

3. For each particle i: Compute the weights as follows.

wit ∝ wit−1fZ(Yt − h([U it ,ΦΛit]))N (Λit; Λit−1, σ
2
l I)

4. Resample and reset weights. Increment t and go to step 1.

However, since PF-MT does not exploit the sparsity or slow sparsity pattern change of Λt,

it results in a dense solution for Λt, i.e. the energy gets distributed among all components

of Λt. This becomes a problem in applications where Λt is indeed well approximated by a

sparse vector with changing sparsity patterns. An alternative could be to assume selected fixed

subset of Λt, i.e. fix Tt = T0. For example, if Φ is a Fourier basis or a Legendre basis, one

would pick the top few components as the set T0. This was done in [6] for illumination. This
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approach works if most energy of Lt does indeed lie in the lower frequency (or lower Legendre)

components, but fails if there are different types of high-frequency spatial variations in Lt over

time. We demonstrate this for the illumination problem later.

2.2 Compressed Sensing

Suppose we have to reconstruct a sparse signal x from the measurement: y = Φx when n =

length(y) , m = length(x) and n < m and Φ is an m×n matrix. We can say that y is given as

the inner product of x and a collection of vectors
m∑

(j=1)

Φj . The problem consists of designing

i. A stable measurement matrix Φ

ii. A reconstruction algorithm to recover x with support N .

i. Since m < n the problem appears to be ill conditioned. But if x is N -sparse and the

non-zero coefficients of x are known, then the problem can be solved provided m ≥ N .

A necessary and sufficient condition for this simplified problem to be well conditioned is

that for any vector v sharing the same N coefficeints for some ε > 0 [3].

(1− ε) ≤ ‖Φν‖2
‖ν‖2

≤ (1 + ε) (2.19)

Which means the matrix Φ must preserve the lengths of these particulat T -sparse vectors.

Direct construction of Φ requires
(
n
N

)
possible combinations of T non-zero entries of

vector. So in practice if each element of Φ is chosen to be iid random variables to have

the RIP (restricted isometry property given by equation (2.19)) with high probability.

ii. The classical approach to inverse problems of this type is to find the vector with the

smallest l2 norm by solving:

x̂ = arg min
x
‖x‖2

s.t, y = φx (2.20)

This has a convenient closed form solution x̂ = Φ>(ΦΦ>)−1y. But this would never yield

a sparse solution but instead would give a nonsparse x̂ with many non-zero values. While
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l2 norm measures signal energy and not sparsity, l0 norm on the other hand counts the

number of non-zero entries. Hence the modified optimization problem is given by:

x̂ = arg min
x
‖x‖0

s.t, y = φx (2.21)

But solving this is numerically unstable as well as NP-complete requiring an exhaustive

search of all possible nonzero entries [19]. On the other hand the l1 norm, can exactly

recover sparse signals as suggested in [[9], [5], [2]], given as:

x̂ = arg min
x
‖x‖1

s.t, y = φx (2.22)

2.2.0.1 Modified Compressed Sensing

Now if only a partial knowledge of the support is known, a modified version of compressive

sensing can reconstruct the signal from even lesser number of measurements compared to

traditional CS. The key idea of mod-cs is [[27]], given a partial but partly erroneous support

knowledge: T , we can write the support of x as N = T ∪ ∆ \ ∆e, where ∆ = N \ T is

the unknown set of misses in T and ∆e = T \ N is the unknown set of extras in T . Now

if N = T ∪ ∆, the CS problem reduces to finding a solution that is sparsest on T c. Hence

modified CS attempts to solve:

x̂ = arg min
x
‖xT c‖1

s.t, y = φx (2.23)

Dynamic Modified sensing: One of the applications of modified CS is recursive reconstruc-

tion of sparse signals with time i.e. the CS algorithm becomes dynamic. For a time sequence

we solve equation (2.23) with T = N̂(t−1) , where N̂(t−1) is the estimate of the support from

t− 1 given as: N̂ = {i ∈ [1, n] : x̂2
i ≥ α}. where α ≥ 0 is the zeroing threshold. The threshold

is so chosen that α is slightly equal to or slightly less that the smallest value of the support,

so that it ensures zero misses and very few false additions. For compressed signals, α would
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be evaluated after replacing the support with b%-support, which means it would contain b% of

the signal energy. For the noisy observation case it becomes the modified BPDN [27]

x̂t = arg min
x
‖xT c‖1 + ‖yt − φx‖22 (2.24)

2.2.0.2 Regularised Modified Compressed Sensing

Now if we have the knowledge of how the signal xT was generated, we can use this to reduce

the reconstructional error by solving [17]:

x̂ = arg min
x

[γ‖xT c‖1 + ‖xT − µT ‖22]

y = Φx (2.25)

Where µT is the mean of the distribution of xT . Dynamic Regularized Modified compressed sensing:

For a time sequence of signals, we can apply equation (2.25) with T = N̂t−1 and µT = (x̂(t−1))T

and hence solve [17] :

x̂t = arg min
x

[γ‖xT c‖1 + ‖xT − (xt−1)T ‖22]

y = Φx (2.26)

For the noisy case, when the noise is large this extra constraint put in by the Regularised

Modified CS becomes more effective and is given by [17],

x̂t = arg min
x

[γ‖xT c‖1 + ‖xT − (xt−1)T ‖22 + ‖yt − φx‖22] (2.27)

The Modified Compressed Sensing works when the support set of xt changes slowly over time

and also the change in the values of x are small.
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CHAPTER 3. Particle Filtered Modified Compressed Sensing

The key idea of PaFiMoCS is to importance sample on the small dimensional state vec-

tor, while replacing importance sampling by slow sparsity change constrained posterior mode

tracking for recovering the sparse spatial signal. For every importance sampled particle of

the small dimensional state vector, one solves the regularized Modified-CS problem to recover

the spatial signal and its support. The weighting step is designed appropriately according to

the importance sampling principle [10]. We successfully demonstrated the use of PF-MT for

visual tracking across certain types of illumination variations in [6]. But as, PF-MT also does

not exploit the sparsity or slow sparsity pattern change of Λt. In situations where Λt is well

approximated by a sparse vector whose support set does change over time, as explained in the

introduction, most existing PF algorithms cannot be used for our problem, since we would like

to (a) deal with multimodal observation likelihoods, (b) large dimensional state spaces and (c)

the state being a sparse spatial signal with unknown and slowly changing sparsity patterns.

However as we explain below the PF-MT idea can be adapted to solve this problem. It is

possible to modify PF-MT to also utilize sparsity and slow sparsity pattern change and doing

this removes the limitation of PF-MT explained above. The main idea is to use regularized

Modified-CS proposed earlier for linear problems with slow sparsity pattern and signal value

change in the mode tracking step of PF-MT. We refer to the resulting algorithm as Particle

Filtered Modified-CS (PaFiMoCS) [21]. In situations where Λt is indeed well approximated

by a sparse vector with a changing sparsity pattern, this significantly improves reconstruction

performance. We demonstrate this for the illumination application later. We show how to

design PaFiMoCS for tracking moving objects across spatially varying illumination changes.

Extensive experiments on both simulated data as well as on real videos involving significant

illumination changes demonstrate the superiority of the proposed algorithm as compared with
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existing PF based tracking algorithms.

3.1 Notation

The notation ||b||k is used to denote the lk norm of vector b. For any set T and vector b,

(b)T is used to denote a subvector containing the elements of b with indices in T. For a matrix

A, (A)T denotes the submatrix by extracting columns of A with indices in T. The term (xt)Nt

denotes the vector comprising of the elements of xt with indices Nt at time t. We denote the

complement set as N c
t i.e., the set of indices of xt that do not belong to Nt. The symbol ′\′

denotes the set difference. While going from t − 1 to t, the set of new elements to be added

are denoted by St whereas the set of deleted elements be denoted by Rt. Thus St = Nt \Nt−1

and Rt = Nt−1 \ Nt. The ∪ and ∩ denote set-union and set-intersection respectively. For

a set Nt, |Nt| denote the cardinality of a set, but for a scalar x, |x| denotes the magnitude

of x. The notation vec(.) denote vectorization operation which operates on a matrix m × n

to give a vector of size mn by cascading the rows. The Hadamard product is denoted by �.

The function round(.) operates on a matrix Z to output a matrix with integer entries closest

to zi,j∀i, j and the operator mean(.) gives the arithmetic mean of a vector. The notation

N (y;µ,Σ) denotes the value of Gaussian distribution with mean µ and covariance Σ computed

at y and x ∼ N (µ,Σ) denotes that random variable x is Gaussian distributed with mean µ

and covariance Σ. Similarly, the notation U(a; c1, c2) denotes the value of the uniform density

defined over [c1, c2] computed at a while x ∼ U(c1, c2) denotes that x is uniformly distributed

over [c1, c2]. The notation Unifp(N) selects randomly any p unique entries of N where p �

|N |. S ∼ Ber(N, p) means each particle in N has a probability p of being present in S and are

independent of each other. I denotes the identity matrix. The terms 1 and 0 refer to column

vectors with all entries as 1 and 0 respectively. A> denotes the transpose of a vector/matrix.

3.2 Problem Formulation

The goal is to recursively recover a time sequence of states Xt from noise-corrupted and

nonlinear measurements, Yt, when the state vector Xt can be split into two parts, a large
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dimensional, Lt, and a small dimensional part, Ut, with the following properties

1. Lt is in fact a spatial signal, that is sparse (many elements of Lt or of a linear transform

of Lt are zero)

2. the sparsity pattern of Lt changes slowly over time and the same is true for its nonzero

coefficients

Mathematically, this means the following. The observation Yt satisfies

Yt := h(Xt) + Zt, Zt
i.i.d.∼ fZ(z) (3.1)

i.e. Zt is independent and identically distributed (i.i.d.) observation noise with probability

density function (pdf) at any time given by fZ(z). In many situations, this is Gaussian.

However, often to deal with outliers, one models Zt as a mixture of two Gaussian pdf’s, one

which has small variance and large mixture weight and the second with large variance but small

mixture weight. For the above model, the observation likelihood, OL(Xt), can be written as

OL(Xt) := fYt|Xt
(Yt|Xt) = fZ(Yt − h(Xt)) (3.2)

More generally, sometimes the observation model is specified implicitly, i.e. it can only be

written in the form

h̃(Yt, Xt) = Zt, Zt
i.i.d.∼ fZ(z) (3.3)

In this case, the observation likelihood, OL(Xt), becomes

OL(Xt) = fZ(h̃(Yt, Xt)) (3.4)

Notice that (3.1) is a special case of (3.3) with h̃(Yt, Xt) = Yt − h(Xt).

The state Xt can be split as

Xt =

 Ut

Lt


where Lt is a sparse signal, i.e. it can be rewritten as

Lt = ΦΛt (3.5)
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and Λt is a nl-length sparse vector with support set Tt, i.e.

Tt := support(Λt) = {j : (Λt)j 6= 0} (3.6)

We assume the following models on Tt and (Λt)Tt and on Ut.

Tt = Tt−1 ∪At \Rt, where

At ∼ Ber(T ct−1, pa)

Rt ∼ Ber(Tt−1, pr) (3.7)

(Λt)Tt = (Λt−1)Tt + (νl,t)Tt , (νl,t)Tt ∼ N (0, σ2
l I)

(Λt)T c
t

= 0 (3.8)

Slow support change means that pa and pr are small. Slow signal value change means that σ2
l

is small.

In the absence of any other specific information, we also assume a linear Gaussian random

walk model on Ut.

Ut = Ut−1 + νu,t, νu,t ∼ N (0,Σu) (3.9)

If the only thing that is known is that the values of (Λt)Tt and Ut change slowly, then the

above linear Gaussian random walk model is the most appropriate one. However, as far as the

proposed algorithms are concerned, they are also applicable with minor changes for the case

where (Λt)Tt = g(Λt−1, νl,t) and g(.) is known.

The state transition prior, STP, corresponding to the above system model can be written

out as follows.

STP(Xi
t ;X

i
t−1) := fXt|Xt−1

(Xi
t |Xi

t−1)

= STP(T it ;T
i
t−1)STP(Λit; Λit−1, T

i
t )×

STP(U it |U it−1) (3.10)
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Figure 3.1 Markov Model of givel state space model

where

STP(T it ;T
i
t−1) := P (Tt = T it |Tt−1 = T it−1)

= P (At = (T it \ T it−1), Rt = (T it−1 \ T it ))

= p
|T i

t \T i
t−1|

a (1− pa)nl−|T i
t−1|−|T i

t \T i
t−1| ×

p
|T i

t−1\T i
t |

r (1− pr)|T
i
t−1|−|T i

t−1\T i
t | (3.11)

STP(Λit; Λit−1, T
i
t ) := fΛt|Λt−1,Tt(Λ

i
t|Λit−1, T

i
t−1)

= N ((Λit)T i
t
; (Λit−1)T i

t
, σ2

l I) (3.12)

STP(U it ;U
i
t−1) := fUt|Ut−1

(U it |U it−1)

= N (U it ;U
i
t−1,Σu) (3.13)

the markov model for our designed problem is shown by Fig. (3.1).

3.2.1 PaFiMoCS: Particle Filtered Modified-CS algorithm

For PaFiMoCS, we let Xt,s = Ut and we let Xt,r = [Tt,Λt]. In the cost function that

we minimize for the mode tracking step, we also include a term of the form ‖ΛT c‖1 with

T = T it−1 := {j : |(Λit−1)j | > α}, i.e. T is an estimate of the support of Λit−1 computed using a
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threshold α ≥ 0. Doing this is a tractable approximation to trying to find the vector Λ that is

sparsest outside the set T (i.e. the vector with the smallest number of new support additions

to T ) among all vectors Λ that satisfy the observation model constraint (often referred to as

the data constraint) and are “close enough” to the previous estimate, (Λit−1)T . Also, since Tt is

part of the residual state space, we need to include a term proportional to its state transition

prior in the weighting step.

Algorithm 2 PaFiMoCS: Particle Filtered Modified-CS

Input: Yt
Output: U it , T

i
t ,Λ

i
t, w

i
t

Parameters: (algorithm) α, γ, (model) Σu, σ
2
l , pa, pr, fZ(z)

For all t ≥ 0 do

1. For each particle i: Importance sample Ut from its prior: U it ∼ N (0,Σu)

2. For each particle i: Mode track Λt, Tt with imposing slow sparsity pattern change, i.e.

compute Λit as the solution of

min
Λ
C(Λ) := − log fZ(Yt − h([U it ,ΦΛ])) +

‖Λ− Λit−1‖22
2σ2

l

+ γ‖ΛT c‖1

and T = T it−1

and compute T it by thresholding Λit, i.e.

T it := {j : |(Λit)j | > α}

3. For each particle i: Compute the weights as follows

wit ∝ wit−1fZ(Yt − h([U it ,ΦΛit]))N (Λit; Λit−1, σ
2
l I)STP(T it ;T

i
t−1)

where STP(T it ;T
i
t−1) is defined in (3.11).

4. Resample and reset weights. Increment t and go to step 1.

3.2.2 PaFiMoCS-support: PaFiMoCS for faster support changes

A second approach which is useful when support changes of Λt are faster is to also include

Tt as part of the state on which we importance sample, i.e. to use Xt,s = [Ut, Tt] and Xt,r = Λt.

The resulting algorithm is summarized in Algorithm 3.
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Algorithm 3 PaFiMoCS-support: PaFiMoCS for faster support changes

Input: Yt
Output: U it , T

i
t ,Λ

i
t, w

i
t

Parameters: (algorithm) α, γ, (model) Σu, σ
2
l , pa, pr, fZ(z)

For all t ≥ 0 do

1. For each particle i: Importance sample Ut from its prior: U it ∼ N (0,Σu)

2. For each particle i: Importance sample Tt from its prior: T it = T it−1 ∪ Ait \ Rit where

Ait ∼ Ber((T it−1)c, pa) and Rit ∼ Ber(T it−1, pr).

3. For each particle i: Mode track Λt, Tt with imposing slow sparsity pattern change, i.e.

compute Λit as the solution of

min
Λ
C(Λ) := − log fZ(Yt − h([U it ,ΦΛ])) +

‖Λ− Λit−1‖22
2σ2

l

+ γ‖ΛT c‖1

and T = T it

Update T it as

T it := {j : |(Λit)j | > α}

4. For each particle i: Compute the weights as follows

wit ∝ wit−1fZ(Yt − h([U it ,ΦΛit]))N (Λit; Λit−1, σ
2
l I)

5. Resample and reset weights. Increment t and go to step 1.
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CHAPTER 4. Visual Tracking Across Partially Varying Ilumination

Changes

In this section, we focus on visual tracking across spatially varying illumination changes

which is an important practical example of the general problem studied above. Here we ex-

press a spatial illumination variation as a sparse vector. For our problem we represent the

illumination patterns by a sufficiently large dimensinal Legender basis functions so that more

complex illumination patterns, which can be represented by the higher order Legender basis

coefficient can also be accomodated [21]. However that would lead to to a large dimensional

residual space and using this fact we can have a sparse representation of a complex illumina-

tion pattern, i.e, at a certain time only a few Legendre basis coefficients will contribute towards

definig the illumination and the others would either be zero or have insignificantly small values.

Considering the visual tracking problem we can split our state vector into the large dimensional

Legendre basis coefficients Λt and the small dimensional motion parameters Ut. Now in case of

spatially varying illuminatin change. We show in this section that the legende basis coeffients

are sparse and also the sparsity pattern changes slowly over time.

4.1 State Space Model

The system model consists of simple dynamical models for illumination, Λt and motion

parameters Ut and the suppoprt of the illumination model Tt. The observation Yt is given as

the image frame at time t.
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4.1.0.1 System Model

We model the motion parameter Ut such that it consists of scale, horizontal translation and

vertical translation and is given as Ut = [st, u
x
t , u

y
t ]
T such that its dimension is limited to 3 and

Λt ∈ RD are the coefficients of the Legendre basis function. Both Ut and Λt follow the model

as defined in the previous section given by (3.9), (3.8) and the support change model of Λt is

given by (3.7). Also the corresponding state transition prior (STP) are as defined by (3.11),

(3.12), (3.13).

4.1.1 Observation Model

We use the observation model similar to [6]. The changed appearance of the image at time

t, It is represented in terms of a linear combination of the initial template I0 scaled by a set of

Legendre basis functions as introduced in [14]. Let pk denote the kth Legendre basis function,

then with D = 2k + 1, the template It is computed as follows:

vec(It) = ΦΛt + I0 (4.1)

The matrix Φ has its columns consisting of the initial template scaled by D legendre basis

functions and is defined as [6] :

Φ = [vec((I0) � p0), ...., vec((I0) � pD−1)] (4.2)

Λt, a D×1 vector, is the Legendre basis coefficients at time t and hence is called the illumination

vector and P, the Legendre basis matrix is as defined in [[14, 6]] given as:

P ,



p0 p1(x1) · · · pk(x1) · · · pk(y1)

...
...

...
...

p0 p1(x1) · · · pk(x1) · · · pk(yM )

...
...

...
...

p0 p1(xM ) · · · pk(xM ) · · · pk(yM )


(4.3)

Here D relates to nl defined in the Section (I). Given the motion parameters at time t, the

translated and scaled template region of the current frame Yt (called as ROI, region of interest)
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can be computed using [14, 6]:

ROI(Ut) = round
(
JUt +

i0
j0

) (4.4)

where, J =

[(i0 − ĩ0) 1 0]

[(j0 − j̃0) 0 1]


i0 and j0 are M -dimensional vectors where M denotes the number of pixels in I0. ĩ0 = mean(i0)

and j̃0 = mean(j0). Thus the observation model is similar to the one given in [14, 6]

Yt(ROI(Ut)) = ΦΛt + I0 + Zt (4.5)

Comparing with the system model given in (3.3), we can say h̃(Yt, Xt) = Yt(ROI(Ut))−ΦΛt−

I0. Here Zt is assumed to be independent and identically distributed (i.i.d.) Gaussian given by

Zt ∼ N (0, Σ0 ), where Σ0 = σ2
0I and σ2

0 denotes the variance of individial pixel noise. Thus for

our system model, given the state vector Xt = [Ut, Tt, Λt]
>, we have the following Observation

Likelihood (OL),

p(Yt|Xt) = p(Yt(ROI(Ut))|Λt)p(Yt(ROI(Ut)
c)|Λt)

∝ exp(−Yt(ROI(Ut))− ΦΛt
2σ2

o

)p(Yt(ROI(Ut)
c))

ROIc denotes the pixels outside the ROI and it does not depend on the state vectors Ut or Λt.

Hence we can write the OL as:

OL(Xt) , p(Yt|Ut,Λt, Nt) ∝ p(Yt(ROI(Ut))|Λt)

= ΠM
n=1[N ([Yt(ROI(Ut))]; (ΦTt(Λt)Tt + T0)n, σ

2
o)]

= ΠM
n=1[N ([Yt(ROI(Ut))]; (ΦΛt + T0)n, σ

2
o)]

=
1√

2πσ0M
exp(−Yt(ROI(Ut))− ΦΛt

2σ2
o

) (4.6)

where [ ]n denotes the nth element of a vector. Hence comparing with (3.2), we have fZ(h̃(Yt, Xt)) =

1√
(2π)σ0

exp[−‖Yt(ROI(Ut))−ΦΛ−I0‖
2σ2

0
] The pixels outside the ROI is assumed to have intensities that

do not depend on Ut and Λt. The Conditional likelihood of Λt given a realization U
(i)
t of Ut, is

defined as:

CL(i)(Λt) = OL(Λt, U
(i)
t ) (4.7)
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4.1.2 Support Change in Real Video

To show that there is a slow support change in real-time data, we take consecutive 20 frames

from a video and plot the support change with respect to time as shown in Fig. 4.1. For sparse

signals, the support is clearly T = {i ∈ [1, n] : (Λt)
2
i > 0}, but in real data the elements outside

the sparse vector may not be exactly 0. In such cases we take b% − Energy Support [27] i.e,

at time t, the support Tt is calculated as: T = {i ∈ [1, n] : (Λt)
2
i > α}, where α is the largest

real number for which T contains at least b% of the signal energy.

The change in support is computed as follows: For time t > 0

i. The illuminated face template are handmarked manually for each frame in the training

dataset.

ii. The corresponding illumination vector Λt is computed from the face template It as : Λt =

(Φ>Φ)−1Φ>(It − I0) using approximations It = ΦΛt + I0

iii. Compute support Tt :=

j ∈ [1, n] :

∑
j

x2
j

n∑
i=1

x2
i

≥ 0.99


i.e, b = 99 in Fig. 4.1 .

iv. The change in support can be either given as any element added to or deleted from the

support. We compute additions as: |Tt\Tt−1|
|Tt−1| and deletions as: |Tt−1\Tt|

|Tt−1| and the supposrt

size is given as |Tt|D

We estimate the support size for two different videos. In Fig. 4.1 (a) and (b) we give the

various time instances of the illuminated face template and we see that the illumination is not

uniform over the face i.e, spatially varying. (a) correspond to a situation where a person walks

under a tree in daylight and (b) correspond to a situation where a person across a window. In

Fig. 4.1 (c) and (d) we plot the size of the changes (additions and deletions) of the Legendre

support (set of indices of the large Legendre basis coefficients) at each time as a ratio of the

support size corresponding to illumination conditions in Fig. 4.1 (a) and (b) respectively. From

Fig. 4.1(c), we see here that though the support size remains more or less constant for most of
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Figure 4.1 Support Change of Illumination Vector in real time video. additions = |Tt\Tt−1|
|Tt−1| and

deletions = |Tt−1\Tt|
|Tt−1| and the normalised support size is given as |Tt|

D

the time period and changes only at after a few intervals. Also notice that there the additions

and deletions from the support do not occur at every time slot, but, at all times, the changes

are less than 10% of the actual support size. But in case of Fig. 4.1(d), we see that the change

in support is much large and more frequent but the support size here also remains more or less

constant for most of frames. So we can say that illumination vector is sparse in the Legendre

basis and the sparsity pattern changes slowly over time.
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4.2 Pafimocs Algorithms

Considering the system models given above the PaFiMoCS algorithms (2), (3) for this

problem is given by algorithms (4) and (5) respectively.

Algorithm 4 PafiMoCS : Estimation of sparse vector Λt from observation Yt and impor-

tance sampling on Ut, and state vector Xt = [Ut, Λt]

1. At t = 0, U0, T0 and Λ0 are known,
For i = 1....Npf ; assign particle set as:

U
(i)
0 ∼ N (U0,ΣU0

)

T
(i)
0 = T0

(Λ(i))T0 ∼ N (ΛT0 ,ΣΛ0)

(Λ(i))T c
0

= 0

2 At each time t > 0 and for i = 1....Npf :

a. Importance Sample U
(i)
t ∼ N (U

(i)
t−1, Σu)

b. Compute ROI(U
(i)
t ), using (4.4)

c. Using current observation Yt compute Yt(ROI(U
(i)
t ))

d. Perform Reg-Mod-CS:

Λ
(i)
t = arg min

Λ
[γ‖(ΛT c)‖1 +

‖Yt(ROI(U
(i)
t ))− ΦΛ− I0‖22

2σ2
0

+
‖(Λ− Λ

(i)
t−1)T ‖22]

2σ2
l

where T = N
(i)
t−1.

e. Compute T
(i)
t = {j; |(Λ(i)

t )|j > α}
f. Assign Importance weight as:

ω
(i)
t ∝ OL(U

(i)
t ,Λ

(i)
t )STP (Λ

(i)
t ; Λ

(i)
t−1, T

(i)
t )STP (T

(i)
t ;T

(i)
t−1)

g. Resample and reset weights. Increment t and go to step 1.

The block diagram for algorithm (4) and algorithm (5) are given in fig. (4.2) and fig. (4.3)

respectively.
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Algorithm 5 PafiMoCS : Estimation of sparse vector Λt from observation Yt and impor-

tance sampling on Ut and Nt and state vector Xt = [Ut, Tt,Λt]

1. At t = 0, U0, T0 and Λ0 are known,
For i = 1....npf ; assign particle set as:

U
(i)
0 ∼ N (U0,ΣU0

)

T
(i)
0 = T0

(Λ(i))T0 ∼ N (ΛT0 ,ΣΛ0)

(Λ(i))T c
0

= 0

2 At each time t > 0 and for i = 1....npf :

a. Importance Sample on signal support :

A
(i)
t ∼ Ber(T

(i) c
t−1 , padd) and

R
(i)
t ∼ Ber(T

(i)
t−1, prem).

Get T
(i)
t = (T

(i)
t−1 ∪A

(i)
t ) \R(i)

t

b. Importance Sample U
(i)
t ∼ N (U

(i)
t−1, Σu)

c. Compute ROI(U
(i)
t ), using (6)

d. Using current observation Yt compute Yt(ROI(U
(i)
t ))

e. Perform Reg-Mod-CS:

Λ
(i)
t = arg min

Λ
[γ‖(ΛT c)‖1 +

‖Yt(ROI(U
(i)
t ))− ΦΛ− I0‖22

2σ2
0

+
‖(Λ− Λ

(i)
t−1)T ‖22]

2σ2
l

where T̂ = T
(i)
t .

f. Compute T
(i)
t = {j; |(Λ(i)

t )|j > δ}
g. Assign Importance weight as:

ω
(i)
t ∝ OL(U

(i)
t ,Λ

(i)
t )STP((Λ

(i)
t ), T i

t , (Λ
(i)
t−1), T

(i)
t−1)

∝ OL(U
(i)
t ,Λi

t)STP (Λ
(i)
t ; Λ

(i)
t−1, T

(i)
t )

h. Resample and reset weights. Increment t and go to step 1.
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Figure 4.2 Block Diagram for Algorithm (3).

Figure 4.3 Block Diagram for Algorithm (4).
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CHAPTER 5. EXPERIMENTAL RESULTS

5.0.1 Simulation

A video is simulated using a random walk model to a persons face on an arbitrary back-

ground and a Legendre sparse illumination model is applied to the face template, such that the

support of the Legendre basis changes every few frames also based on a random walk model.

We use Monte-Carlo to estimate the normalised-mean squared error for Λ. The following steps

are implemented in simulating the video

1. Initialization: T0 ∼ Choose any random 5 numbers from 1 to D (here D = 41),and hence

|T0| = 5, which is the dimension of the support at time t = 0. Hence the support size is

around 10% of the illumination vector. Initial motion parameters is set as U0 = [0, 0, 0]>

and (Λ0)T0 = 1 and (Λ0)T c
0

= 0.

2. for t > 0

(a) The illumination model is changed every 5 frames. A sparse vector of the legendre

basis coefficients are chosen in the following way:

At ∼ Ber((Tt−1)c, pa);

Rt ∼ Ber((Tt−1), pr);

Tt ∼ ((Tt−1) ∪At)\Rt;

compute (Λt)Tt ∼ N ((Λt−1)Tt , σ
2
l I) and (Λt)T c

t
= 0.

We consider pa and pr such the change in the support size is small and the support

size remains nearly constant. So we choose pa = 0.06, a small number which would

ensure that a small number of coefficients are added to the support and pr is chosen

to be 0.7, using the fact (D − k)Pa = kpr, where k = |Tt|, such that the support
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size k would remain more or less constant. We fix σ2
l = 10−2, which implies the slow

sparsity change over time.

(b) The illumination of the frame at t is then simulated as : Compute the legendre basis

vector P and compute Φ as given by (4.2). I0 is the initial template (person’s face)

at time t = 0.

(c) The face template at time t is given as It = ΦΛt + I0 + Σ0, where Σ0 = σ2
0I.

(d) A random walk model is applied to the object shape Ut and we generate the motion

vector Ut ∼ N [Ut−1, ΣU ] such that,

st ∼ N (st−1, σ
2
s);

uxt ∼ N (uxt−1, σ
2
ux) and

uyt ∼ N (uyt−1, σ
2
uy)

We take σ2
s = 0.0001, σ2

ux = 0.2 and σ2
uy=0.001

(e) Compute (ROI(Ut)) using (4.4) and reshape the face template and compute Yt(ROI(Ut))

= It, where Y is the image frame (the fixed background). The recomputed Yt is the

video frame at time t.

3. Here we choose the threshold α at each step so that it would ensure the support to

contain 99% of the signal energy. The normalised mean squared error, (NMSE) = ||Λ̂t −

Λt||22/||Λt||22, using 100 particles for σ2
0 = 10−6.

4. The result for the normalised error of Λ is compared with PF-MT, PF, Aux-PF.

5.0.2 Video Sequence

Here we compare our proposed algorithms with other existing PF algorithms and show that

the two Pafimocs algorithms outperforms the rest. We consider llumination conditions which

can account for high frequency spatial variation of light when a person moves under a tree, a

region of frequent shades and light, through an illuminated corridor and move towards or away

from a light source.
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Figure 5.1 Normalised mean squared error for Λ for various PF-based methods, where NMSE =
‖Λ̂t−Λt‖22
‖Λt‖22

In the first experiment shown in fig. (5.3), we use a training sequence. Here we hand

mark the centroids of the face to get the location of the face in each frame to learn the motion

parameters. Also the corresponding values of Λ for the first 20 frames are obtained as given in

Section IV −B. The covariance matrices of the change of Ut and of Λt, σΛ and σu are estimated

using standard maximum likelihood estimation applied to (Ut − Ut−1) and (Λt − Λt−1). For

all the PF algorithms, we used a fixed particle size of Npf = 60. The tracking performance

of PAFIMOCS in the presence of illumination change was compared with several other PF-

based algorithms like - PF-MT [6] (both using D = 7 and D = 41), Auxiliary-PF [20] and

PF-Gordon [12]. PF-Doucet [10] cannot be implemented here for reasons similar to that given

in [6]. PF-MT with both 7 and 41 dimensions fail here. That is because when we use Λ as

a 7-dimensional vector, it does not include the higher order Legender basis coefficients, that

contribute mostly to the complex illumination of the face as studied in Section IV − B . In

our case as we see from fig. 4.1, the illumination vector is sparse and the support size changes
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Figure 5.2 Normalised support error estimation of Λ plot for various PF-based methods.

slowly over time i.e, only certain directions of the basis vector contribute to the illumination.

PF-MT can detect a slow change in the vector in every direction of the basis. Hence when we

use use PF-MT with 41 dimension, it fails to detect the sparsity of a vector. So it looses track

after a certain time step, before which the illumination is more or less constant over the face i,e

with much less spatial variation. Aux-PF fails from a much earlier track compared to the other

algorithms and PF-Gordon also fails as for a 44 - dimensional state vector just 60 particles are

insufficient to detect the true state vectors.

For our second experiment fig. (5.4), we show when a person walks through a corridor across

a window. We show the comparisons for frames 16, 23 and 30. Here we use Npf = 120. But

still we see that PF-MT using both 7 and 41 dimensional illumination vector fails to track the

target. Since PF-MT also fails we can say that both PF-Gordon and Auxilliary PF are likely

to fail with 120 particles. For both our experimnets we do not compare with PF-Gordon and

Auxilliary PF using 7-dimensional illumination vector as in [6], it has been already shown that

PF-Gordon and Auxilliary-PF both fails to track with 7-dimensional illumination vector using

100 particles as both these algorithms are not able to detect the illumination vector correctly.

In fig (5.5), we show more complex immulinaiton conditions where the illumination sources

are corridor light and at certain intervals light coming through doors of a room of maybe sunlight

through window. We show that both our algorithms are able to track in such complex illumina-

tion conditions for nearly frames. In fig (5.7), we show an experiment when do an experiment
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where a person moves through shaded regions. and in fig (5.6) we show the tracking of a person

moving through a well lit subway station obtained from https://redpill.ecn.purdue.edu/ hvact/

.
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Figure 5.3 Visual comparison of various methods for face tracking across illumination changes, when a

person moves under a tree. Here we show comparisons of our algorithm with other existing

PF algorithms. The first row correspond to PAFIMOCS-algorithm 1 and the second row

correspond to PAFIMOCS-algorithm 2. the thurd and fourth row correspond to PF-MT

with illumination vector 7 and 41 dimensions respectively. The fifth row correspond to

PF-Gordon and the last row correspond to Auxilliary-PF. We show the comparison for

frames 15, 36, 41, 48 and 56 respectively.
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Figure 5.4 The first 3 figures of the first row correspond to our Algorithm 1 and the last 3 figures

correspond to Algorithm 2. The second row first 3 figures correspond to PF-MT with

7 dimensional illumination vector and the last 3 figures correspond to PF-MT with 41

dimensional illumination vector.

Figure 5.5 The figures show tracking when a person walking through a corridoor. The first row

correspond to algorithm 1 and the second row correspond to algorithm 2
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Figure 5.6 The figures show tracking when a person walking in a subway station. The first row

correspond to algorithm 1 and the second row correspond to algorithm 2

Figure 5.7 The figures show tracking when a person walking in any shaded region.The first row

correspond to algorithm 1 and the second row correspond to algorithm 2



www.manaraa.com

39

CHAPTER 6. Conclusion and Future Work

We have proposed an algorithm for sequential estimation (i.e. tracking) of sparse signals

from a small number of linear measurements. The algorithm like PF-MT divides the state

space into smaller dimensional effective basis and a large dimensional residual space, which is

sparse. It utilizes a dynamic prior model on both sparsity pattern change as well as on signal

dynamics on the known part of the support and the smaller dimensional effective basis. It can be

consedered as a merger between particle filtering and compressive sensing and hence the name -

Particle Filtered Modified Compressive Sensing(PaFiMoCS). Our simulation experiments prove

PaFiMoCS to be more promising as compared to other PF related algorithms. However, the

proposed illumination PaFiMoCS algorithm can very easily be adapted to other representations

of the target e.g. feature based approaches. A similar approach can be also be developed to

jointly handle appearance change due to illumination as well as other factors like 3D pose

change, by using the more sophisticated models of recent work. Similarly, illumination can also

be represented using other parameterizations or using different basis vectors. Also the same

algorithm can be developed such that it is robust to occlusions where the occlusion model can

itself be designed as a sparse vector or as has been designed in [6]. Another application that

can be handled with this is contour tracking where the motion is small dimensional and the

deformation in shape could be large dimensional and designed as Fourier sparse vector.
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